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Bayesian Modeling
*** Unknown = “Random”
*** Learn/update from data
*** Prior information
*** Uncertainty management!!!

Bayesian Hierarchical Modeling BHM
Why?

*** Dealing with complexity
*** Combining information:
Diverse datasets & Science

How?
Sequence of probability models



BHM Skeleton:
1. [ data

�
process, � ]

2. [ process
� � ]

3. [ � ]
Posterior: via Bayes’ Theorem

4. [ process, � �
data ]

1. Data Model
* Conditional distribution of data
* Combine diverse datasets
2. & 3. Priors

* Physical modeling
4. Posterior

* Combination, with uncertainties



Ozone Prediction

Processes
Ozone & Meteorology: O(s,t) & M(s,t)
Fields in space s & time t
Station Data

***Sampling–Support Issues
***Met. & Ozone data not co-located)
Science

***Atmos: Dynamics & Chem.
***Sources
***Representation via Comp. Models



BHM Skeleton

1. [ D � , D � �
O(s,t), M(s,t), � ]

2. [ O(s,t), M(s,t)
� � ]

3. [ � ]

Keys

1. [ D � , D � �
O(s,t), M(s,t), � ]

= [ D � �
O(s,t), � ] [ D � �

M(s,t), � ]

2. [ O(s,t), M(s,t)
� � ]

= [ O(s,t)
�
M(s,t), � ] [ M(s,t)

� � ]



Example: “Chicago” Plus

10 by 10 Grid.
O( � ,t) = 100-dimensional vector. t=day.
Focus: Ozone, treat Met as given.
Stages

1. [D( � ,1),...,D( � ,T)
�
O( � ,0),O( � ,1),...,O( � ,T),M, � ]

= product [D( � ,t) �
O( � ,t),M, � ]

2. [O( � ,0),O( � ,1),...,O( � ,T)
�
M, � ]

= [O( � ,0)
�
M, � ] product [O( � ,t) �

O( � ,t-1) M, � ]

3. [ � ]



Alternate Representation
1. D( � ,t) = K O( � ,t) + e( � ,t)
e( � ,t) independent over time
K maps stations to grid
2. O( � ,t) = ���	� + H O( � ,t-1) + G M( � ,t) + n( � ,t)
n( � ,t) independent over time
& e’s and n’s independent

Keys Try simple Covariances for errors.:
1. Independent measurement errors e( � ,t)
2. Some spatial dependence explained by condition-
ing on O( � ,t-1) & M( � ,t)
3. Parameterized H: current location and it’s 4 nearest
neighbors
(Requires a “boundary process”)
4. Parameterized G: regress onto Met.
M( � ,t) vrs M( � ,t-1)
We don’t predict Met: leave it to experts:
In predictive mode, their forecasts!!



5. Model � �
Time series: 
����������������� �

M, � ]
= 
�� � ��� �

product 
�� � � � ��� � , M, � ]
Using mixture model:
A. “Normal pressure regime”
Simple autoregression
B. “High pressure regime”
Simple autoregression, but larger intercept

Regionally averaged Pressure through
Day t-1 used to randomly pick regime
(Probit model)



Discussion
A. Skeletons in the closet:
*** Computation (MCMC).
*** [ � ] hard, but important.
B. Hierarchical vision:
*** Extend to [PM, O]=[PM

�
O][O]

*** Link to “Regional” via models:
***** [O(region)

�
O(urban)]

***** Use Dispersion models &
***** weather prediction
*** HBM: results plus uncertainty
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